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1 Introduction

It is often possible to represent the behavior of a physical system by describing all the

different states which the system can occupy and by indicating how the system moves from

one state to another in time. If the time spent in any state is exponentially distributed, or,

equivalently, if the probabilities of transition depend only on the state currently occupied

by the system and not on the length of time that the state is occupied nor on any

previously occupied state, then the system may be represented by a Markov process.

Even when the system does not possess this exponential property explicitly, it is usually

possible to construct a corresponding impUcit representation. Examples of the use of

Markov processes may be found extensively throughout the biological, physical and soda]

sciences as well as in business and engineering.

A Markov process is characterized by a (possibly infinite) set of states. The system

being modelled by this process is assumed to occupy one and only one of these states at

any given time. The evolution of the system is represented by transitions of the Markov

process from one state to another. These transitions are assumed to occur instantaneously;

in other words, the action of moving from one state to another consumes zero time. The

fundamental property of a Markovian system, referred to as the Markov property, is that

the future evolution of the system depends only on the current state of the system and

not on the past history.

The information we would like to obtain from the system is a knowledge of the proba-

bilities of being in a given state or set of states at a certain time after the system becomes

operational. Often this time is taken to be sufllciently long that all influence of the initial

starting state has been erased. The probabKities thus obtained are referred to as the

long-run or stationary probabilities. We shall denote by lri(n) the probability that the

Markov chain is in state i at step n, i.e. x_(n) - Prob{X,, - i}. In vector notation we

let lr(n) - (_r1(n), lr2(n), ..., _q(n), ..., ). Note that the vector Ir is a row vector. We

shall adopt the convention that all probability vectors axe row vectors. All other vectors

will be considered to be column vectors unless specifically stated otherwise.

Consider a system that is modelled by a continuous time Markov chain (CTMC).

Let Iri(t) be the probability that the system is in state i at time t. Furthermore, let

qii,i - 1---rt;j - 1,... n denote the rate of transition from state i to state j. Then

We may set qii(t) = - _ iei q_i(t), which yields

and

i.e.

lira _ri(t + At) -- _i(t) ]iN ql,(t)_rk(t) +

(2)

(3)

dt = (41
k
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In matrix notation, this gives
d (t)

= (5)
When the Markov chain is homogeneous, we may drop the dependence on time and

simply write,

dt (6)

At steady state, the rate of change of _r(t) is zero and therefore, for a homogeneous

CTMC,

•-Q=o. (7)
The vector _r, (now written independent of t) is the stationary or long-run probability

vector (ri is the probability of being in state i at statistical equilibrium) and may be

obtained by applying equation solving techniques to the homogeneous system of equations

(7). Also, this equation may be written as

.P=., (8)

where P = QAt + I and the desired probability vector appears as the eigenvector corre-

sponding to a unit eigenvalue of P. H At is chosen sufficiently small then P is a stochastic

matrix. For irreducible Markov chains, the unit eigenvalue of P is the one with largest real

part. Matrix techniques may be applied to either (7) or (8) to determine the stationary

probability vector. The matrix Q is called the transition rate matrix, or the infinitesimal

generator of the Markov chain, while the matrix P is called the transition probability

matrix.

One of the practical difficulties is the large size of the matrices involved. For small

dense matrices the method of choice for solving linear systems of equations is the LU

decomposition and for computing eigenvalues/eigenvectors, it is the well-known QR al-

gorithm. However, as the problem sizes increase these standard methods, or any method

intended for dense problems, becomes uneconomical. Moreover, the standard methods do

not take advantage of the sparsity of'P.

Before discussing the algorithms themselves, we would like to say a few words on the

potential difficulty inherent in the problems to be solved. Nonsymmetric eigenproblems

can be so sensitive to variations in the original data, namely the matrix P, that any pro-

cedure to approximate eigenvalues or eigenvectors of P may encounter serious difficulties.

We examine here the particular case of the unit eigenvalue of P. The sensitivity of a given

eigenvalue hi of P to perturbations is usually measured by its condition number which is

defined as the inverse of the cosine of the angle between its corresponding right and left

eigenvectors yi and z_, i.e.,

c(_,) = II_lllly, II
I(_,_,)1" (9)

In practice this means that a small perturbation to P, of norm e, may disturb the eigen-

value )q by as much as c()_i)e. In the situation of interest to us, the right eigenvector is

known to be (1,1, ..., 1) _" and the left eigenvector consists of non-negative components.

As a result we can show that c(_) <__v/-n. The eigenvalue is therefore well-conditioned in

general.



The condition number for the elgenvector y_ involves the reduced resolvent S(AI),

defined as the inverse of the restriction of P - _I to {z_) ±, the subspace orthogonal to

the left eigenspace associated with A_, see [7], p. 17:

= llS(  )ll.

Though not apparent from the de_tion, thecondition number for the eigenvector is

implicitly related to that for the eigenwlues of P, see Wilkinson [28]. Moreover, it is easy

to show from the definition that [7]

1
c(yO > max

- -

A consequence of the above inequality is that a poor separation of the unit eigenv_ue

from the other eigenvalues will cause poor conditioning for the associated eigenvectors.

Another difllculty caused by the poor separation of the unit eigenvalue is a slow rate of

convergence. In Markov chain models, there is often a cluster of eigenv_ues very close to

the unit eigenvalue, a result of the near decomposability of the system. This may render

the eigenvalue methods untolerably slow. It is important to detect such cases and use

appropriate alternative decomposition methods when they arise.

2 Iterative and Direct Solution Methods

Iterativemethods of one type or another are by far the most commonly used methods

for obtaining the stationary probabilityvector from eitherthe stochastictransitionprob-

abilitymatrix or from the infinitesimal generator. There are several important reasons

for this choice. First, an examination of the iterative methods usually employed shows

that the only operation in which the matrices are involved, are multiplications with one

or more vectors, or with preconditioners. These operations do not alter the form of the

matrix and thus compact storage schemes, which minimize the amount of memory re-

quired to store the matrix and which in addition are well suited to matrix multiplication,

may be conveniently implemented. Since the matrices involved are usually large and very

sparse, the savings made by such schemes can be considerable. One such sparse storage

scheme, and the one used in implementing the iterative procedures in this study, is the

compressed sparse row format format [9, 20]. In this scheme only the non-zero elements,

their column indices and an index to the beginning of each row is kept. With direct

equation solving methods, the elimination of one non-zero element of the matrix during

the reduction phase often results in the creation of several non-zero elements in positions

which previously contained zero. This is called ftll-in and not only does it make the or-

ganizati6n of a. compact storage scheme more di_t, since provision must be made for

the deletion and the insertion of elements, but in addition, the amount of ftll-in can often

be so extensive that available memory is quickly exhausted. A successful direct method

must incorporate a means of overcoming t_ese_i_cultles.

Iterative methods have other advantages. Use may be made of good initial approx-

imations to the solution vector and this is especially beneficial when a series of related

experiments is being conducted. In such circumstances the parameters of one experiment
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often differ only slightly from those of the previous; m&uy will remain unchanged. Con-

sequently, it is to be expected that the solution to the new experiment will be close to

that of the previous and it is advantageous to use the previous result as the new initial

approximation. If indeed there is little change, we should expect to compute the new

result in relatively few iterations.

An iterative process may be halted once a prespecified tolerance criterion has been

satisfied, and this may be relatively lax. For example, it may be wasteful to compute the

solution of a mathematical model correct to full machine precision when the model itself

contains errors of the order of 5-10%. A direct method is obligated to continue until the

final specified operation has been carried out.

And lastly, with iterative methods, the matrix is never altered and hence the build-up

of rounding error is, to all intents and purposes, non-existent.

For these reasons, iterative methods have traditionally been preferred to direct meth-

ods. However, iterative methods have a major disadwntage in that often they require a

very long time to converge to the desired solution. More advanced iterative techniques

such as the method of Arnoldi, have helped to alleviate this problem but much research

stKl remains to be done, particnlarly in estimating a priori, the number of iterations, and

hence the time, required for convergence. Direct methods have the advantage that an

upper bound on the time required to obtain the solution may be determined before the

calculation is initiated. More important, for certain classes of problem, direct methods

often result in a much more accurate answer being obtained in less time. Since iterative

method will in general require less memory than direct methods, these latter can only be

recommended if they obtain the solution in less time. Unfortunately, it is often difficult

to predict when a direct solver will be more efficient than an iterative solver.

3 Direct Methods and Markov Chains

We are concerned with obtaining the stationary probability vector _r from the equations:

(10)_Q = 0, _ > 0, a'e = 1.

Note that if we try to apply direct methods to the alternate formulation

" _rP = ,r,

we need to first rewrite this as

,r(I- P) = 0,

(11)

(12)

and in both cases we need to solve a homogeneous system of n linear equations in n

unknowns. A homogeneous system of n linear equations in n unknowns has a solution

other than the trivial solution (lri = O, for all i) if and only if the determinant of the

coefficient matrix is zero, i.e. if and only if the coefficient matrix is singular.

Since the determinant of a matrix is equal to the product of its eigenvalues mad since Q

and (I- P) both possess a zero elgenvalue, the singularity of Q (and I- P) and hence the

existence of a non-trivial solution, follows. It is known that if the matrix Q is irreducible,

there exists lower and upper triangular matrices L and U such that

QT= LU. (13)



Once an LU decomposition has been determined, a forward substitution step fo]lowed

by a backward substitution is usually sufficient to determine the solution of the system

of equations. For example, suppose we are required to solve Az = b with de¢(A) -_ 0 and
b _ 0 and suppose further that the decomposition A = LU is available so that LUz = b.

By setting Uz - z, the vector z may be obtained by forward substitution on Lz - b, since
both L and b are known quantities. The solution z may subsequently be obtained from

Uz - z by backward substitution since by this time both U and z are known quantities.

However, in the case of the numerical solution of Markov chains, the system of equa-

tions, lrQ = 0, is homogeneous, i.e. b = 0, and the coefilcient matrix is singular. In this
case, the final row of U (if the Doolittle decomposition has been performed) is equal to

zero. Proceeding as indicated above for the non-homogeneous case, we have

Qrz = (LU)z = 0. (14)

If we now set Uz = z and attempt to solve Lz = 0 we find that, since L is non-singular,

we must have z = 0. Let us now proceed to the back substitution on Uz = z = 0 when

_n = 0. It is evident that we may assign any non-zero value to z,,, say z_ = 7, and

then determine, by simple back-substitution, the remaining dements of the vector z in

terms of 7. We have zi = _ for some constants 4, i = 1, 2, ..., n, and c,, = 1. Thus the
solution obtained depends on the value of 7- There still remains one equation that the

dements of a probability vector must satisfy, namely that the sum of the probabilities

must be one. Consequently, normalizing the solution obtained from solving Uz = 0 so
that the conservation of probability condition holds, yidds the desired unique stationary

probability vector Ir corresponding to the infinitesimal generator Q.

An alternative approach to this use of the normalization equation is to replaee the last

equation of the original system with 7re = 1. If the Markov chain is irredudble, this will
ensure that the coefilcient matrix is non-singular. Furthermore, the system of equations

will no longer be homogeneous (since the right hand side is now _), and so the solution

may be computed without problem.

Of course, it is not necessary to replaee the last equation of the system by the nor-

malization equation. Indeed, any equation could be replaced. However, this is generally

undesirable, for it will entail more numerical computation. For example, if the first equa-

tion is replaced, the first row of the coeftlcient matrix will contain all ones and the right

hand side will be el. The first consequence of this is that during the forward substitution
stage, the entire sequence of operations must be performed to obtain the vect6r z; whereas

if the last equation is replaced, it is simply possible to read o_ the solution immediatdy,

i.e. Zl = z2 = ...z,,-1 = 0 and z_ = 1. The second and more damaging consequence is

that substantial f_-in will occur since a multiple of the first row which contains all ones
must be added to'all remaining rows and a cascading effect will undoubtedly occur in

all subsequent reduction steps. The problem of fill-in, which plagues direct methods is

considered later. However, one should note that available packages such as blA28, see

e.g. [9], will prevent this disastrous situation by reordering the equations dynamically.

The strategy used in a package such as MA28 attempts to reach a compromise between
numerical stability and minimization of fill-in.
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3.1 Inverse Iteration

Inverse iteration is the method of choice for the direct solution of _rQ = O. Although

this may sound rather like a contradiction in terms, we shall see that inverse iteration,

when applied to an infinitesimal generator matrix Q to obtain the stationary probability

vector Ir requires only a single iteration to determine _" at least as accurately as any of

the aforementioned direct methods. In fact, this method simply reduces to the standard

LU decomposition method with special treatment of the zero pivot and the right-hand

side vector.

Consider an iterative scheme based on the relation

z(k) = (QT _ pi)-lz(k-1)" (15)

Let z (°) be an arbitrary column vector that can be written as a linear combination of the

right-hand eigenvectors of Q_'; i.e.

z (°) = _ _,v,, (iO)

where the vectors vi axe the right eigenvectors of the matrix QT corresponding to the

eigenvalues _i; i.e

QTv i --- _v_; i - 1,2,...,n. (17)

Then

= (QT_ .i)- zco) = _ .)-b,

= - + Z] - - .)-b,].

(18)

(19)

Consequently, if for all i _ r, I_ -/'1 << 1_' - #1 convergence to the eigenvector v, is

rapid since [()_ - p)/()u - p)]l, will rapidly tend to zero. If p - ),,, then the summation

in equation (19) is zero and the eigenvector v, will be obtained to full machine precision

in a single iteration.

Note that when implementing inverse iteration, there is no need to explicitly form the

inverse of the shifted matrix (Qr _ pI). Instead, the approach to be adopted is to solve

the set of linear equations

(Qr _ pi)z(_) = z(h-1).

This is obviously identical to the original formulation in equation (15). If p is not an

eigenvalue of Q, then (QT _ pI) is non-singular and for z (h-l) _ 0, an LU decomposition

approach can be implemented without further ado.

If p is an eigenvalue of Q (i.e. p - _), then (Qr _ pI) is singular. In this case the

zero pivot which arises during the LU decomposition should be replaced by a small value

L This should be chosen as the smallest representable number such that 1 ÷ e > 1 on

the particular computer being used. After one iteration, this approach results in a very

inaccurate solution to the set of equations, but a rigorous error analysis [28] will show

that since the elements in the solution vector possess errors in the same ratio, normalizing

this vector will yield a very accurate eigenvector.
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In our particular case we are looking for the right eigenvector corresponding to the

zero eigenvalue of QT. Therefore, letting # -- 0 in the iteration formula, we get

(QT _ 0I)z(h) = Qrz( ) = z(h-1) (20)

and thus we are simply required to solve

Qrz(1) = z(°) (21)

Note that choosing z (°) = e, reduces the amount of computation involved. The iteration

simply reduces to the back substitution step

Uz(I) = m,1 (22)

An appropriate normalization of z(:) will yield the stationary probability vector, i.e.

(23)
= erz(1) •

3.2 Compact Storage Schemes for Direct Methods

Frequently the matrices generated from Markov models are too large to permit regular

two-dlmensional arrays to be used to store them in computer memory. Since these ma-

trices are usually very sparse, it is economical, and indeed necessary, to use some sort of

packing scheme whereby only the non-zero elements and their positions in the matrix are

stored. One of the most commonly used storage schemes for sparse matrices is the row

sparse compact storage, sometimes referred to as the a,ja, ia scheme [0]. This involves

the use of a real array A(1 : NZ) containing the non-zero elements of the matrix, stored

row-wise, an integer array JA(1 : NZ) containing the column positions of the correspond-

ing elements in the real array A, and finally a pointer integer array IA(1 : IV + 1) the i-th

element of which points to the beginning in the arrays A and JA of the consecutive rows.

When a direct equation solving method is to be applied, provision usually must be

made to include elements which become non-zero during the reduction and somewhat

less important to remove elements which have been eliminated. If memory locations are

not urgently required, the easiest way of removing an element is to set it to zero without

trying to recuperate the words which were used to store the element and its location

pointers. To include an element into the storage scheme, either some means of appending

this element to the end of the storage arrays must be provided, or else sufficient space

must be left throughout the arrays so that fill-in can be accommodated as and when it

occurs. Th6 first usually requires the use of link pointers and is most useful if the non-zero

elements are randomly dispersed throughout the matrix, while the second is more useful

• if the pattern of non-zero elements is rather regular.

When applying direct equation solving methods such as Ganssian elimination, it is

usually assumed that the complete set of linear equations has already been derived and

that the entire coefficient matrix is stored somewhere in the computer memory, albeit in a

compact form. The reduction phase begins by using the f_st equation to eliminate all non-

zero elements in the first column of the coefficient matrix from column position 2 through

8



n. More generally, during the i Ch reduction step, the i ts equation is used to eliminate

all non-zero elements in the i th column from positions (i + 1) through n. (Naturally, it

is assumed that the pivot elements are always non-zero, otherwise the reduction breaks

down).
However, since we are responsible for both the initial generation of the system of

equations and for its solution, it is possible to envisage an alternative approach, and one

wkich has several advantages over the traditional method outlined above. Assume, as is

usually the case, that the coe_cient matrix can be derived row by row. Then, immediately

after the second row has been obtained, it is possible to eliminate the element in position

(2,1) by adding a multiple of the first row to it. This process may be continued so that

when the i-th row of the coe_cient matrix is generated, rows 1 through (i - 1) have been

derived and are already reduced to upper triangular form. The first (i - 1) rows may

therefore be used to eliminate all non-zero elements in row i from column positions (i, 1)

through (i, i - 1), thus putting it into the desired triangular form. Note that since this

reduction is performed on Q_', it is the columns of the infinitesimal generator that are

required to be generated one at a time and not its rows.

This method has a distinct advantage in that once a row has been generated in this

fashion, no more fill-in will occur into this row. It is suggested that a separate storage area

be reserved to hold temporarily a single unreduced row. The reduction is performed in this

storage area. Once completed, the reduced rowmay Be compacted into any convenient

form and appended to the rows which have already been reduced. In this way no storage

space is wasted holding subdiagonal elements which, clue to elimination, have become

zero, nor in reserving space for the inclusion of adcUtional elements. The storage scheme

should be chosen bearing in mind the fact that these rows will be used in the reduction

of further rows and also later in the algorithm during the back-substitution phase.

Since the form of the matrix will no longer be altered, the efllcient storage schemes

which are used with many iterative methods can be adopted. Note that this approach can

not be used for solving general systems of linear equations because it inkibits a pivoting

strategy from being implemented. It is valid when solving irreducible Markov chains since

pivoting is not required in order that the LU decomposition of an infinitesimal generator

matrix Qr be performed in a stable manner.

Later in this paper, we report on our computational experience with a direct method

programmed according to the guidelines given above. Specifically, we implemented a

sparse inverse iteration algorithm called GE (for Gaussian Elimination). This program

accepts the transpose of a transition rate matrix which is stored in the usual row compact

form [9]. It extracts each row of Qr one at a time, expands this row into a vector of length

n and performs reductions on it by adding multiples of previously reduced rows. _Vhen

the reduction is completed, the reduced row is compacted once again and appended to

previously reduced rows. The multipliers are not kept. As is shown later, this method

works extremely well for small and medium sized problems (less than 2,500 states), but it

requires too much memory when large problems are involved. We also experimented with

the software package MA28, but its performance was always inferior to that of GE. The

reason is that GE was designed uniquely for Markov chain problems, while MA28 was

designed as a general purpose sparse linear equation solver. We stress that GE should

not be used to solve systems of equations which require pivoting. In these, and in a wide
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varietyof other problems, MA28 has been used very successfully[16].

4 Single vector iterations

4.1 The power method

The simplest iteration method for computing the dominant eigenvector of a matrix A is

the singlevector iteration

z(k+*) __ _Az(h)

where _(_) is a normalizing factor, typically the component of the vector Az (_) that has the

largest modulus. One problem with this simple scheme is that its rate of convergence can

be very slow. The convergence factor for the dominant eigenvalue A, is given by A2/Ai,

where A_ is the subdominaut eigenv_ue. In situations where the eigenvalues cluster around

A1, as is the case for nearly decomposable systems, the convergence can be unacceptably
slow.

For our situation the matrix of interest A is pT. Since we know that the matrix

has row sums equal to 1 and has 1 as the dominant eigenvalue, we can safely skip the

normalizing factor and the above iteration takes the form

z(h+x) = Prz(h) (24)

= zok)- qTz(k) (25)

4.2 Gauss-Seidel iteration and Successive Overrelaxation

Relaxation schemes are based on the decomposition

QT=D-F,-F

where D is the diagonal of QT, -E is the strict lower part of Qr and -F its strict upper

part. The Gauss-Seidel iteration then takes the form

(D - E)z (k+x)= Fz (h). (2s)

This corresponds to correcting the j-th component of the current approximate solution,

for ] - 1, 2, ..n, i.e., from top to bottom, by making the ]-th component of the residual

vector equal to zero. To denote specifically the direction of solution this is sometimes

referred to as forward Gauss-Seidel. A _ackward Gauss-Seidel iteration takes the form

(D - F)z (k+*)= Ez(*) (27)

and corresponds to correcting the components from bottom to top.

Note that convergence of the above (forward) iteration is governed by the spectral

radius of (D - E)-IF. Convergence may sometimes be improved by using the alternative

splitting

wQT = (Z) -_E)- (_F + (Z -w)D)

10



which leads_o the iteration, called successive overrelaxation, (SOR)

(D - wE)z (h+1)= (wF + (I - wD)) z(_). (28)

A backward SOl% relaxation may also be written.

For many problems there exist some value of w which provides the best possible con-

vergence r_-te. The resulting optimal convergence rate can be a considerably improvement

over Gauss-Seldel. The choice of an optimal, or even a reasonable, value for w has been

the subject of much study, especially for problems arising in the numerical solution of

partial differential equations [27]. Some results have been obtained for certain classes of

matrices. Unfortunately, very little known at present for arbitrary non-symmetric linear

systems,

As a general rule, it is best to use a forward iterative method when the preponderance

of the elemental mass is to be found below the diagonal for in this case, the iterative

method essentially works with the inverse of the lower triangular portion of the matrix and

intuitively, the closer this is to the inverse of the entire matrix, the faster the convergence.

On the other hand, the backward iterative schemes work with the inverse of the upper

triangular portion and these methods work best when the non-zero mass lies above and

on the diagonal. We point out that some spedalized counter examples exist which makes

the above recommendations only rules of thumb.

Little information is available on the effect of the ordering of the state space on the

convergence of these iterative methods. Examples are available in which Gauss-Seidel

works extremely well for one ordering but not at all for an opposing ordering, [15]. In

these examples the magnitude of the non-zero elements appears to have little effect on

the speed of convergence. It appears that an ordering that in some sense preserves the

direction of probability flow works best.

4.3 SSOR Iteration

The Symmetric Successive Overrelaxation method (SSOB,) consists of following a relax-

ation sweep from top down by a relaxation sweep from bottom up. Thus, the case w = 1

corresponding to a SGS (Symmetric Gauss Seidel) scheme would be as follows:

(D- E)z (h+I/2) = Fz (k) (29)

(D- F)z (h+1) = Ez (s+*/2) (30)

while for arbitrary w, it is:

(D-wE)z (_+I/2) =

(D - wF)z (k+*) =

(wF + (I_ wD))zCh)

(wE + (i - wD)) z(k**/'-)

(31)

(32)

The main attraction of SSOR schemes is that the iteration matrix is similar to a symmetric

matrix when the original matrix QT is symmetric. This situation rarely occurs in Markov

chain models. SSOR does however, help to reduce poor convergence behavior that results

from a badly ordered state space.
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4.4 Preconditioned power iterations

As was already mentioned the power method can be extremely slow to converge when

the subdominant eigenvalue is very close to one. The relaxation schemes described above

typically have a better convergence rate. This means that the iteration matrices corre-

sj)onding to these schemes have an eigenvalue _ farther away from 1 than the original

matrix. - •

Preconditioning is a technique whereby the original system of equations is modified in

such a way that the solution is unchanged but the distribution of the eigenvalues is better

suited for iterative methods. In a general context, a preconditioning technique consists

of replacing a system Az - b by a modified system such as M-IAz = M-lb. Here M

is a preconditioning matrix for which the solution of M'z - y is inexpensive. When the

coefficient matrix is singular and the right hand side is zero, the method turns out to be

equivalent to the power method applied to the matrix (I - M -I A).

We have seen that for the numerical solutlon of Ma_kov chain problems, the power

method may be written as

z(h+l) = z(k) - Qrz(_) (33)

= (I- Qr)z(h) (34)

Here preconditioning involves premultiplying the matrix Qr with a matr_ M -I , generally

chosen so that M approximates QT' but is such that its LU decomposition can be e_ciently

determined. In this case, the iteration matrix, (I - M -I Qr) has one unit eigenvalue and

the remaining eigenvaIues are (hopefully) all close to zero, leading to a rapidly converging

iterative procedure. In this paper we refer to such methods as preconditioned power

iterations, or fixed point iterations.

4.5 Gauss-Seidel, SOR and SSOR preconditionings

A look at (26) reveals an interesting connection with the power method. We can rewrite

(28)
z (1'+1) = (D - E)-IFz (_)

= (D- E)-' ((D- E)-
= z(h)- (D - E)-IQrz (h)

Comparing this with equation (25), we observe that the above iteration is simply the

power method applied to the matrix

1- (D - ZC)-_Q r. (35)

Thus (D - E) performs the role of the preconditioning matrix M. As a result we may

view the Gauss-Seide] method as a preconditioned power iteration. It is an attempt to

reduce _2, without changing the eigenvector.

The solution to the above system is identical with that of the original one. Its rate

of convergence, on the other hand, may be substantially faster than that of the original

problem. For this reason we will refer to the system (35) as the Ganss-Seldel precon-

ditioned version of Qrz = 0. Similarly one can define an SOR preconditioning and an

SSOR preconditioning.
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4.6 ILU preconditioning

By far the most popular preconditioning techniques are the incomplete LU factorization

techniques. These are sometimes also refer_ed to as "combined direct-iterative" methods.

Such methods are composed of two phases. First we start out by initiating an LU decom-

position of Qr. At various points in the computation, non-zero elements may be omitted

according to various rules. Some possibilities are discussed in the foUowing paragraphs.

In all cases, instead of arriving at an exact LU decomposition, what we obtain is of the

form
Qr = LU - E

where E, called the remainder, is expected to be small in some sense. When this has been

achieved, the Udirect" phase of the computation is completed. In the second phase, this

(incomplete) factorization is incorporated into an iterative procedure by writing

Qr, = (LU - E)z = 0

and then using
LUz (k+1) = Ez(k)

or equivalently

z(k+1) = z(k) _ (LU)-IQrz(k)

as the iteration scheme. Note that this is the same as solving the preconditioned (from

the left) system of equations

U-1L-1Qrz = 0

by the power method.

In this paper we report on the numerical results obtained with three different in-

complete factorizations. The first has been widely discussed and found to be successful

especially when applied to systems of equations that arise in the solution of elliptic partial

differential equations. Given the matrix Qr, this ILU factorization consists of performing

the usual Gaussima Elimination factorization and dropping any fill-in during the process.

In other words,

Q r = LU + E (36)

where L is unit lower triangular, U is upper triangular, and L + U has the same zero

structure as the matrix O r. This is referred to as ILU(0) or IC(0), for Incomplete Choleski,

in the symmetric case.

If we denote by NZ(O) the set of all pairs (i,j) for which qli _ O, then a formal

description of the ILU(O) algorithm applied to a matrix Q is as follows. Note that the

diagonal elements of U are not stored since they are known implicitly to be unity.

Algorithm: ILU(O)

Do/= 1,n

Doj = 1,n

If (i,j) • Nz(o) then

* Compute s = qlj -- _='1 (id)-I [ikUki

* If (i > j) then lij = s

* If (i<j) then _j = s/l.

13



ILU(0) is known to exist for non-singular M-matrices [14]. It may also be shown to

exist for the matrix Q (and Qr), by trivially extending the results in [2], page 42.

The second incomplete factorization that we studied is a threshold based scheme. Here

the decomposition proceeds in a manner similar to that described for the GE method of

section 3.2. However, after a row of the matrix has been reduced and before that row

is recompacted and stored, each non-zero elementls examined. H the absolute value of

any element in the row is less than a prespecified threshold, then it is replaced by zero.

Similarly, if any of the multipliers formed during the reduction are less than the threshold,

they are dropped from further consideration. The only exception to this drop threshold

are the diagonal elements which are kept no matter how small they become. We refer to

this incomplete factorization technique as ILUTH.

The final type of incomplete factorization which we examined, is based on a realization

that only a fixed amount of memory may be available to store the incomplete factors, L

and U, so only a fixed number of non-zero elements are kept in each row. These are

usually chosen to be the largest in magnitude. The algorithm proceeds in the same way

as ILUTH. When a row has been reduced, a search is conducted to find the K largest

elements in absolute value. This search is conducted over both the multipliers and the

non-zero elements to the right of the diagonal element. As before, the diagonal elements

are kept regardless of their magnitude. In our experiments, this incomplete factorization

is referred to as ILUK.

Although the above three ILU factorizations are the only ones we considered, there

are other possibilities. For example, some ILU-based methods make use of the symmetric

zero structure of a matrix [11]. In other words, LU is the exact decomposition of the

symmetric non-zero portion of the matrix. W - LU is chosen as

_vi_ - 0 otherwise,

and now standard symmetric ordering schemes, such as those available in SPARSPAK,

can be modified and used quite effectively. However, we believe that ILU0, ILUTH and

ILUK will be the most effective for Markov chain problems.

5 Projection Techniques

5.1 General projection processes

An idea that is basic to sparse linear systems and eigenvalue problems is that of projection

processes [23]. Given a subspace K spanned by a system of rn vectors V --- Iv1,..., v,_]

a projection process onto K - span {V} finds an approximation to the original problem

from the subspace K. For a linear system Az -- b, this is done by writing z - Vy

and requiring that the residual vector b - AVy be orthogonal to some subspace L , not

necessarily equal to K. If a basis for L is W - span_wl,w2, ...,_v,,,) then this yields the

condition:

Wr(b- AV_) = O

14



or

=

For an eigenvalue problem Az = _z, we seek an approximate eigenvalue _ E _ and

an approximate eigenvector _ E K such that the residual vector Az - Xz is orthogonal

to the subspace L. Writing again z = Vy and translating this Petrov-Galerkin condition

yidds;

or

W_AV_ = XW_V_ (38)

which is a generalized eigenwlue problem of dimension m. The minimum assumptions

that must be made in order for these projection processes to be feasible are that WrAV

be non-singular for linear systems and that W'z'V be non-singular for eigenvalue problems.

Clearly this win provide m approximate eigenpairs X_, zi. In most algorithms, the matrix

w_rv is the identity matrix, in which case the approximate eigenvalues of A are the eigen-

v-_lues of the m x m matrix C = WrAV. The corresponding approximate eigenvectors

are the vectors V!/i where !/_ are the eigenvectors of C. Similarly the approximate Schur

vectors are the vector columns of VU, where U - [ul, u_,..., _,} are the Schur vectors of

C, i.e., UsCU is quasi-upper triangular. A common particular case is when K -- L and

V = W is an orthogonal basis of K. This is then referred to as an orthogonal projection

process.

Note that we can adopt either of the two view points eigenvalue problem or linear

systems. The only possible difficulty is that for the linear systems approach, the original

problem is homogeneous (b = O) and the projected problem is not necessarily singular.

We next describe a few of these approaches and describe how preconditioning can be

incorporated.

5.2 Subspace Iteration

One of the simplest methods for computing invariant subspaces is the so-called subspace

iteration methods well-known to the structural engineers. In its simplest form the sub-

space iteration can be described as follows, see [13, 26] for details.
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Subspace Iteration

1. Choosean initial orthonormal systemV0 - [vx,v2,... ,v,,_] and an integer k;

2. Compute X - AkV0 and orthonorma_ze X to get V.

3. Perform an orthogonal projection process onto span{V}.

4. Test for convergence. If satisfied then exit else continue.

5. Take V0 = VU, the set of approximate Schur vectors, (alternatively take V0 = VY,

the set of approximate eigenvectors), choose a new k and go to 2.

The above algorithm utilizes the matrix A only to compute successive matrix by

vector products w - Av, so sparsity can be'exploited. However, it is known to be a

slow method, often much slower than some of the alternatives to be described next. In

fact a more satisfactory alternative is to use a Chebyshev-Subspace iteration: step 2 is

replaced by X = tk(A)Vo, where tk is obtained from the Chebyshev polynomial of the

first kind of degree k, by a linear change of variables. The three-term recurrence of

Chebyshev polynomial allows to compute a vector w - tk(A)v at almost the same cost as

Akv. Performance can be dramatically improved. Details on implementation and some

experiments are described in [22].

5.3 Arnoldi's method

A second technique used in the literature is Arnolcli's method [1, 24] which is an orthogonal

projection process onto K,,, = span{v:, Avl,..., A"-lvl}. The algorithm starts with some

non-zero vector vl and generates the sequence of vectors vi from the following algorithm,
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Algorithm: Arnoldi

I. Initialize:

Choose an initial vector vl of norm unity.

_. Iterate: Do j = 1, 2, ..., m

1. Compute w := Avj

2. Compute a set of j coefBcients h_j so that

w := w - _ hijvi
i----1

(39)

is orthogonal to all previous vi's.

3. Compute hj+:_ = []w][2 and vj+l = w/hj+:,.+.

By construction, the above algorithm produces an orthonormal basis of the K_ylov

subspace Km= span{vx, Avl,...,A'_-lvl}. The m x m upper Hessenberg matrix H,_

consisting of the coeffidents h_j computed by the algorithm represents the restriction of

the linear transformation A to the subspace K,_, with respect to this basis, i.e., we have

H,_ = V_'_AW,,,, where V,_ = [vl,v2,... ,v,,_]. Approximations to some of the eigenvalues of

A can be obtained from the eigenvalues of H,,. This is Aruoldl's method in its simplest

form.

Note the useful relation

AV,.= (40)

where H,_ is the (m + I) x m upper Hessenberg matrix whose non-zero elements are the

hij defined in the above algorithm. In other words H,_ is obtained from H,,_ by appending

to it the row [0, 0,..., 0, h_+1.,,,].

As m increases, the eigenvalues of H,,, that are located in the outmost part of the

spectrum start converging towards co_espondlng eigenvalues of A. In practice, however,

one diillculty with the above algorithm is that as m increases cost and storage increase

rapidly. One solution is to use the method itezatively: m is fixed and the initial vector vx

is taken at each new iteration as a linear combination of some of the approximate eigen-

vectors. Moreover, there are several ways of accelerating convergence by pzeprocessing vl

by a Chebyshev iteration before restarting, i.e., by taking vl = t_,(A)z where z is again a

linear combination of eigenvectors.

A technique related to Aruddi's method is the non-symmetric Lanczos algorithm

[17, 8] which delivers a non-symmetric tridiagonal matrix instead of a Hessenbezg matrix.

Unlike Arnddi's process, this method requires multiplications by both A and A 2"at every

step. On the other hand it has the big advantage of requiring little storage (5 vectors).

Although no comparisons of the performances of the Lanczos and the Aruddi type al-

gorithms have been made, the Lanczos methods are usually recommended whenever the
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number of eigenvaluesto be computedis large which doesnot correspondto the situation
under consideration.

5.4 Preconditioned GMRES for singular systems

In this section we adopt the viewpoint that we are trying to solve the homogeneous system

Ax=0 (41)

The case of interestto us is when there isa non-trivialsolution to (41), i.e.,when A is

singular. Then the solution is clearlynon-unlque and one may wonder whether or not

thiscan cause the corresponding iterativeschemes to fail.The answer isusually no and

we willillustratein this section how standard Krylov subspace methods can be used to

solve (41). We start by describing the GMRES algorithm for solving the more common

linearsystem

Az = b. (42)

in which A is non-singular. GMRES is a least squares procedure for solving (42) on the

Krylov subspace K,_. More precisely,assume that we are given an initialguess z0 to (42)

with residual ro = b- Azo. Let us take vx = ro/llr0[12 and perform m steps of Arnoldi's

method as described earlier. We seek an approximation to (42) of the form z," = z0 + 5,"

where 6,. belongs to K,.. Moreover, we need this approximation to minimize the residual

norm over K,.. Writing/_,. = V,_F,. we see that F,. must minimize the following function

ofF,

a(_) = lib- A(_o+ V-F)II=
= I1,'o-AV,.FII=
= IIIIroll_=- AV,_FII= (43)

Using the relation (40) and letting _3 - Ilroll=this becomes

J(F) = IIV,.+lLSel-H_F]II,= II_el-/r_,Fll, (44)

by the orthogonality of V,_+x. As a result the vector F,. can be obtained inexpensively by

solving a (rn + I) x rn least squares problem. We should point out that this procedure

is alsoa projection process. More precisely,as is well-known the minimization of J(F) is

eqnivalent to imposing the Gram condition that

ro - AV,.F I v Vv E span{AV,.}

which means that we axe solving A6 = r0 with a projection process with

K = span{to, Aro,..., A,.-Xro}

and L = AK.

A briefdescriptionof the GMRES algorithm follows.Details can be found in [25].
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Algorithm: Preconditioned GMRES

i. Start: Choose z0 and a dimension m of the Krylov subspaces.

2. Arnoldi process:

• Compute re = b- Az0,/3 = llroll_ and = r0/_.

• For j = 1, 2, .., m do:

hia = (Avj, vi), i=1,2,...,j,

J

i----1

=

(45)

Define H,,, as the (m + 1) x m matrix whose non-zero entries are the coefficients hij.

3. Form the approzimate solution:

• Findthe vector w ch minimizesthe function = I[ el - H YlI where
el = [1, 0,... O]2', among all vectors of R".

• Compute z,n = Zo + V,_,ym

4. Restart: If satisfied stop, else set z0 _ z,, and goto 2.

Each outer loop of the above algoritkm, i.e., the loop consisting of steps 2, 3, and 4,

is divided in two main stages. The first stage is an Arnoldi step and consists of building

a basis of the Krylov subspace K,_. The second consists of finding in the affine space

z0 + K,_ the approximate solution z,,, which minimizes the residual norm. This is found

by solving the least squares problem of size m + 1 of step 3, whose coefficient matrix is

the upper Hessenberg matrix H,_.

Note that in practice one computes progressively the least squares solution _/,_ in

the successive steps j = 1,... rrt of stage 2. This allows to obtain at every step and at

virtually no additional cost, the residual norm of the corresponding approximate solution

zh without having to actually compute it, see [25]. As a result one can stop as soo-

the desired accuracy is achieved.

GMI_S is theoretically equivalent to GCR [10] and to ORTHODIR ['"

costly both in terms of storage and arithmetic [25]. Moreover, it can b,

exact arithmetic, the method cannot break down although it may be vex

stagnate in cases when the matrix is not positive real.
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We now go back to the situation of singular systems of the form (41). In the case

where the right-hand side b is zero and the matrix A is sin_ntlar, the above algorithm

can be used as is to compute the approximate solution of (_11). The only condition is

to take z0 _ 0 to avoid a break down in the first step. From what was said earlier, the

algorithm will compute an approximate solution by attempting to minimize []Az[]2 over

the a_'me subspace Zo _- span_ro, Aro, ..., A'_-lr0_ which is typically of dimension m when

ro -- Azo is non-zero. Thus whenever z0 _ 0 one can expect the method to work without

any difference with the non-homogeneous case. It is subject to the same conditions of

breakdown as the usual GMP_S algorithm for general linear systems: the only possible

cases of break-down is when the inital vector r0 has minimal degree not exceeding m - 1

with respect to A. In this case K,n becomes invariant under A and the algorithm stops

prematurely delivering the exact solution. However, this happens very rarely in practice.

5.5 Preconditioned Arnoldi and GMRES Algorithms

Preconditioning techniques can also be used to improve the convergence rates of Arnoldi's

method and GMP_ES. This typically amounts to replacing the original system (41) by, for

example, the system,

M-1Az = 0 (46)

where M is a matrix such that M-lu_ is inexpensive to compute for any vector _.

Thus in both the Arnoldi and the GMRES case, we only need to replace the original

matrix A in the corresponding algorithm by the preconditioned matrix M-1A. We may

also precondition from the right, i.e., we may replace A by AM -1. In this situation if

AM-lz - 0 we should note that the solution to the original problem is M-lz, which

require one additional solve with M. If M - LU then the preconditioning can also be

split between left and right, by replacing the original matrix by the preconditioned matrix

L-_AU-1.

6 Numerical tests

In thls section we report on some numerical tests to compare the methods described in this

paper. We consider three realistic test problems arising from three different applications.

The tables at the end of this paper present the results obtained when different numerical

solution procedures were used to solve these queueing models. The tests were conducted

on a Ardent Titan superworskstion with two processors using double precision. The

compiler optimization option used was always -03, i.e., the highest. Before examining

the examples and the results, we would like to comment on the accuracy of the results

obtained. Observe that in table t, the residual norm is not always less than 10 -1°, the

tolerance recluested of the method. For example, using SOR with _ - 1.5, the residual

after the maximum number of iteration permitted (1000) is 0.140E-03. This should not

be taken to mean that the computed solution is correct to three decimal places. In fact, in

this particular example, an examination of the queue length distributions shows that the

computed probability vector has no decimal places of accuracy. The reason is that this

problem is somewhat ill-conditioned, and a small residual does not necessarily indicate a
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small error in the solution. We cross-valldated all our results and it was found that in the

tables that follow, the answers obtained are indeed correct when the method converges in

less than the maximum number of iterations. No conclusions should be drawn about the

accuracy of the solution in other cases. Note that this does not exclude the possibility

of having some decimal digits correct when the maximum number is reached, as indeed

is the case of example 1 using SOR with _ - 1.9. However, the reader is urged to use

caution in interpreting results in instances in which the maximum number of iterations

was reached.

6.1 Example 1: An Interactive Computer System.

The model described in Figure 1 below represents the system architecture of a time-shared,

multiprogrammed, paged, virtual memory computer.

Figure 1: nlustration for example 1

The system consists of

• a set of/'V" terminals from which JV users generate commands

• a central processing unit, (CPU)

• a secondary memory device, (SM)

• a filing device, (FD).

A queue of requests is associated with each device and the scheduling is assumed

to be FCFS (First Come First Served). When a command is generated, the user at

the terminal remains inactive until the system responds. Symbolically, a user having

generated a command enters the CPU queue. The behavior of the process in the system

is characterized by a compute time followed either by a page fault, after which the process

enters the SM queue, or an input/output (file request) in which case the process enters

the FD queue. Processes which terminate their service at the SM or FD queue return to

the CPU queue. Symbolically, completion of a command is represented by a departure of

the process from the CPU to the terminals.
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The degreeof multiprogramming at any time is given by 17 - no + nl + n2, where

no, nl and nz are respectively the number of processes in the CPU, SM and FD queues

at that moment. If (po(_?)) -1 is the mean service time at the CPU when the degree of

multiprogramming is 7, then the probabilities that a process leaving the CPU will direct

itself to the SM device or to the FD device are respectively given by pl(_?) = (P0q(u)) -1 and

p2( ) = -1, where is the meancomputetimebetweenpagefaults, and is
the mean compute time between i/o requests. The probability that the process will depart

¢,om the CPU queue to the terminals is given by po(_) = (poc(_)) -1 = 1 - pl(_) - p2(_),

where c(U) is the mean compute time of a process.

The parameter q may be represented as the Belady-Kuehner lifetime function, [4],

whic_ for a process executing in memory space rn is given by q - a(rr_) h, where ¢_ depends

on the processing speed as well as on program characteristics, and k depends both on

program locality and on the memory management strategy. If it is assumed that the total

primary memory available is of size M and that it is equally shared among processes

currently executing in the system, then q(7/)= (M/TI) 1'.

In order to perform the numerical analysis the model parameters were assigned specific

values. The mean compute time between page faults q(_), was obtained by setting c_ =

0.01,M = 128, and/¢ -- 1.5 so that/hPo "- (q(_/))-i _ 100(T//128)l.s. The mean compute

time between two i/o requests r(_/), was taken as 20 msec. so that p2p0 = 0.05, and the

mean compute time of a process, c(17) was taken equal to 500 msec giving pop0 = 0.002.
The mean think time of a user at a terminal was estimated to be of the order of _-1 = 10

sees, the mean service time of the SM was taken as pi "1 = 5 msec and that of the FD to

be p_l _ 30 msec.

The model was solved for 20 users in the system, yielding a stochastic matrix of order

1,771 with 11,011 non-zero elements and also for the case of 50 users, yielding a matrix

of order 23,426 with 156,026 non-zero elements.
It should be noted that this model is not amenable to solution by analytic techniques,

since the CPU service time distribution depends on the degree of multiprogramming 7,

i.e. on the sum of the number of processes in three distinct queues.

6.1.1 Results for Example I

We now begin our examination of the results of example 1. The GE method requires

the least amount of time, but the largest amount of additional memory. This is what we

should expect.

The $OR and S$OR methods do not perform satisfactorily at all. This is because the

matrix is nearly completely decomposable into 21 components, yielding 21 eigenvalues

pathologically close to unity.

The only fixed point iteration scheme that is successful is when a threshold based

preconditioner is used, with a threshold value of r = i0 -4. Here the time is about four

times as long as GE but the additional memory requirement is 20 percent that of GE.

The method of Arnoldi fails completely to converge. However, PCARN (Precondi-

tioned Arnoldi) works rather well for all preconditioners and, at least for this example,

appears to provide the best processing time/memory trade-ofL In fact, in all of the tests,

this method is the only one that never failed to yield satisfactory results. We shall see
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that in one case it had not quite converged in the maximum number of iterations, but

even here, the method was in the process of converging.

Preconditioned GMRES performs satisfactory for all but a few cases. Its performance

using the ILUK preconditioner is very similar to that of PCAR_N. In other cases it performs

less well than PCARN.

Finally, GMRES preconditioned with SOR fails completely.

Only a selected few methods were applied to the solution of the larger instance of this

model, (with 50 customers and a stochastic matrix of order 23,426 with 156,026 non-zero

elements). In this case, the parameters of PCAP_ and GMRES were chosen so that the

additionally memory is roughly equivalent for all preconditioners. PCAltN with either

ILU0 or ILUK appear to be the winners.

We were interested in finding out how the methods would compare when this example

was not NCD. So we artificially adjusted the parameters of the model to ensure this would

not happen, (by setting the mean think time, _ = .01 and pl/_0 -- 1). Tables 3 and 4 give

the results obtained under these circumstances. Note that all the methods now work, for

all cases, and it becomes extremely difticult to choose a best method.

6.2 Example 2: A. Telecommunications Model.

The model in the figure below has been used to determine the effect of impatient telephone

customers on a computerized telephone exchange [5]. In this model a request is made by

a customer for service. The customer is prepared to wait for a certain period of time to

get a reply. If at the end of that period, the reply has not arrived, the customer may

either give up and leave the network or else wait for some period of time before trying

again.

Station $2 represents a node dedicated to a special processing task and required by

all customers. These customers are processed by a single server according to a processor

sharing discipline. Each customer possesses a limited amount of patience which is defined

as an upper bound on its service duration; when his patience is exhausted, the customer

simply gives up processing.

This impatient customer may simply quit the network (with a fixed probability, 1 - h;

otherwise it joins an infinite server station $1 where it remains for a certain period, called

the thinking time, and then re-joins station $2 for another attempt.

A state of this network may be described by the pair (i,j) where i, (respectively j) is

the number of customers in station $1, (_respectively $2)

When j _> 1, the probability of

• a service completion in $2 between t and t + dt is #dr

• a departure due to impatience between t and t + _/t is jrdt.

When i _> 1, the probability of a departure from $1 between t and t + dt is i),dt.

External arrivals to $2 are assumed to be Poisson at rate A
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Figure 2: Illustration for example 2

To obtain a finite Mazkov chain, we assume that K1 is the maximum number of

customers permitted in station $1 and K2 is the maximum permitted in $2. Customers

arriving to a full station are lost. In the model, it is important to choose values of K1 and

K2 large enough so that the probability of saturation is negligible, say less than 10 -l°.

This truncation of the state space will therefore have little effect and the resulting steady

state probabilities may be taken as an accurate approximation of those of the infinite

capacity network.

The following are realistic values as taken from the various reports of Boyer and his

colieagues.

A = 0.6;/_ = 1.0; r = 0.05; h = 0.85 and A = 5.0.

They are the values which we used in our experiments. The values of KI and K2

were varied to obtain matrices of differentorder. First we set K1 = i0 and K2 = 220

which gave a stochasticmatrix of order 2,431 with 11,681 non-zero elements and secondly

we used the values 30 and 550 respectively,which resulted in 17,081 states and 84,211

non-zero elements.

6.2.1 Results for Example 2

Tables 5 and 6 below show the resultsobtained for tMs example_

On both the large and the small e_.ample, the method of Ganssian elimination performs

exceptionally well from the point of view of computation time. More surprisingly,the

amount of additional memory required was smaller that that needed by the preconditioned

Arnoldl and GMRES for the smaller case. It was lessthan twice that needed by these

methods for the larger case. For this example, GEmust be considered the method of

choice. A close investigation of the transition matrix shows that ithas a rather narrow

bandwidth structure which, as we have already discussed, isideal for the GE method.

Once again the SOR methods are not very successful.An examination of the results

does however show that some small number of digitsof accuracy have been obtained
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which indicates that given sufficient iterations these methods might indeed converge.

The fixed point iterations succeed, by and large, in obtaining the correct solution in

under the maximum number of iterations permitted, but the time taken is very long when

compared to GE.

The method of Arnoldi fails complete. However the preconditioned Arnoldi provides

the only competition for GE. In an about face for iterative methods, they require more

additional memory than GE.

For two sets of parameters, the preconditioned GMRES methods are comparable with

PCARN. However, in the other cases they fail. PCAP_'g must be considered to the more

robust. GMRES preconditioned with SOB. and SSOR is not any more successful.

The same type of comments can be made about the results obtained for the larger

model. The only modification is that in two cases, the fixed point iterations become more

competitive with the preconditioned Arnoldi.

6.3 Example 3: A Multi-Class, Finite Buffer, Priority System.

This model, like model number 2, is also taken from the telecommunications literature.

The model consists of a single service center at which two identical servers provide service

to two different classes of customer. The service rates may differ for each class (_I and

#2, but both are exponentially distributed. The arrival processes of the two classes is not

exponential. It has often been observed that teletraf_c is rather bursty in nature and to

take this into effect, hyper-exponential interarrival times with large coefficients of variance

have been associated with these arrival processes.

Class-one customers are assumed to have a high priority. An arriving class-one cus-

tomer is inserted in the queue before all class-two customers. An idle server will only

serve a class-two customer if there are no class-one customers waiting. However, once

a server begins to provide service to a class-two customer, it win continue to serve that

customer even if a class-one customers arrives and is forced to wait; in other words, the

service is non-preemptive.

The effect of the limited capacity buffer is to restrict the number of customers that can

enter the system. Class-tWo customers that arrive to a full buffer ace simply lost. If the

buffer is full and contains both class-one and class-two customers, an arriving class-one

customer will displace a class two-customer. This class two-customer is therefore lost. A

class-one customer that arrives to a system that is full of class one-customers is lost.

Figure 3 represents, schematically, this model.

A six-component vector is required to represent any state of the Markov chain which

underlies this model. Components 1 and 2 may be used to denote the phase of the arrival

process for each of the two classes respectively. Similarly, components 3 and 4 may be

used to represent the number of customers of class 1 and class 2 that are already in the

system. Components 5 and 6 may be used to indicate the condition of the two servers

(viz: idle, serving a class 1 customer, serving a class 2 customer). Since the buffer is

finite, only a finite number of states will be generated. As in the other two examples, we

generated two different sizes of Markov chains from this model. First we set the bufer
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Figure 3: mustration for example 3

size to 16, which generated 1,940states and 12,824non-zero elements. Second we set the
bui_er size to 50 and obtained a matrix of order 19,620 with 131,620 non-zero elements.

The following values for the parameters indicated on the £gwe were obtained from

Perros, [19], and are representative of values currently used by teletra_tlc specialists.

"1 - .00138;u2 = .0000000076;p -.9999, 7, -.00396;72 -.000000018;q = .999995,

#1 - 0.002222; #2 = 0.002222.

6.3.1 Results for Example 3

Tables 7 and 8 below show the resultsobtained forthisexample.

This example shows the GE method in itsworst light. The time is greaterthan

that of most of the preconditionedArnoldi and GMRES methods. Worse than that,its

additionalmemory requirementsare an orderofmagnitude greater.This matrix isnot as

•wellstructuredas that ofexample 2 and consequentlya lotof fi11-inoccurs.Once again

the (S)SOR methods failto converge. The same thing happens when they are used as

preconditionersforGMRES. PreconditionedArnoldiand GMRES perform best,with the

soleexceptionofthe ILU0 preconditionerand GMRES. The fixedpointiterationmethod

alsofailswhen thispreconditionerisused. It alsofailswhen the preconditionerused if

that obtained when only the largestfiveelementsper row arekept.

In the larger example, the fixed point iteration method performs well. Observe how-

ever, the rather large amount of additional memory needed when a threshold of 10 -3 is
used in ILUTH. We would like to point out that although PCARN failed to satisfy the
tolerance criteria in less that 1000 iterations, it had in fact almost converged.

An interesting observation may be made about preconditioners based on the results

presented in tables 7 and 8. When the ILUTH preconditioner is used with PCARN or

GMRES (see table 7) or with FXPTIT (see table 8) a "better" preconditioner obtained
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using _" = 0.001 performs less well than the preconditioner obtained with r = 0.01. With

the smaller threshold value we normally expect that, in the incomplete decomposition of

Q_" into LU + E, E will be smaller. However, because this example is m-conditioned,

U-:L -1 is not necessarily closer to the inverse of QT than the decomposition obtained

with the larger threshold. We conclude that, for NCD problems, a smaller remainder in

an incomplete factorization does not necessarily yield a better preconditioner. We have

observed that in cases like this, when a very small threshold is specified, the residual will

drop steeply after the first iteration but will not improve substantially beyond that. Most

often the residual oscillates around the value it acquires after the first iteration.

This example, like example 1, is also nearly completely decomposable. If we proceed as

we did with example i and modify the parameters to make it non-NCD, we get the results

that are in tables 9 and 10. In this case all of the iterative methods behave satisfactorily.

7 Conclusion

In this paper we explored a wide variety of methods for the numerical solution of Markov

chains. We tested these methods on three realistic problems. The question now arises

as to which method is to be recommended to our readers? Unfortunately our results

do not support the hypothesis that a single "black box" method is available. When the

state space is small, or even for moderately sized problems in which the non-zero elements

lie close to the diagonal, then a direct method such as Gaussisn elimination should be

chosen. However, in other cases, the issue is not so clear. When the matrix is reasonably

well conditioned all of the methods perform more or less satisfactorily. When the matrix

becomes NCD then there is a smaller choice. If forced to make a recommendation, the

most robust method appears to be Preconditioned Amoldi. It is often the fastest, and in

all cases tested either converged within the specified number of iterations or was at least

close to converging when the maximum was reached. None of the other methods can make

this claim. Moreover, note that for the large problems, the preprocessing time to compute

the ILUK and ILUTH incomplete factorizations can be high and even often far exceeds

the time required in the iteration phase. It is possible that our implementations of the

ILUK and ILUTH preprocessing phase could be improved. In obtaining these incomplete

factorizations, a full vector is used to reduce each row. The threshold operations and the

search for the k maximum elements are performed over this vector from the first to the

last non-zero position. If the reduced row contains many zeros, some savings could result

by first compacting the row.

We did not cover every possible solution method in this paper. Simultaneous iteration

methods were not included because our experience over severs] years indicates that this

is inferior to Arnoldi. The Bi-Conjugate Gradient method and the Conjugate gradient

squared method, methods which have had much success in other domains, [21]. were not

included. In fact in our initial study, we programmed both these methods but found them

unsatisfactory. Both failed to converge when applied to NCD problems and in other cases

they performed less well than the methods examined in this report. Potentially com-
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petitive alternatives include the techniques based on polynomial acceleration of Arnoldi's
method such as a hybrid Chebyshev-Arno]di algorithm [22]. As a general rule however, we

observe that the preconditioner makes a bigger difference than the acceleration procedure
itsdf. Thus, in many cases there is hardly any difference between the performance of GM-
RES and PCA11N when ILUTH is used with a small tolerance. When the preconditioner

is excellent then the number of iterations required for convergence is very small and we

expect that whichever iterative procedure is used, it will remain small.

Fina_y, we have not discussed domain decomposition type methods which typically go

under the name of aggregation/disaggregation methods, or iterative aggregation methods,

[6]. These methods are pa_ticula_ly well suited to matrices that are NCD. However, at
each step of these methods we need to find the stationary probability vector of a stochastic
matrix and to solve several systems of equations in which the coefllcient matrix is almost

stochastic and the right-hand side is small. These solutions must be obtained by the

methods discussed in this paper.
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NOTATION FOR TABLES

METHODS:

• GE

• SOR

• SSOR

• FXPTIT

• ARNOLDI

• PCARN

• GMRES

Gaussian elimination (section 3)

Successive overrelaxation (Section 4.2)

Symmetric SOR (Section 4.3)

Fixed point iteration (Section 4.4)

Arnoldi's method (Section 5.3)

Preconditioned Arnoldi (Section 5.5)

Preconditioned GMRES (Section 5.4)

PRECONDITIONERS: (See section 4.6)

• ILU0

• ILUK

• ILUTH

Incomplete factorizafion with zero fill-in

Incomplete factorization keeping KMAX elements/row 11

Incomplete factorization with threshold

METHOD PARAMETERS:

o_

em
oK

•T

Relaxation parameter for SOR based methods

Subspace size for projection methods

Maximum number of non-zero elements permitted per row

Threshold for ILUTH preconditioners

TIMES:

• TOTAL TIME: Total running time for method on Ardent-Titan computer.

.SET-UP TIME: Time taken to compute precondition•r, if applicable.

eITER. TIME: Time to perform "ITERS" iterations of the method.

PLOPS: The number of floating point operations performed by method.

ADDITIONAL The amount of memory required by the algorithm in excess of the

MEMORY: original matrix and a single vector.

ITERS: Thenumber of iterations performed by the method. An asterisk be-

fore this number means that it is the maximum number of iterations

permitted.

RESIDUAL The two norm of the product of the computed solution and transi-

NORM: tion rate matrix.

The caption under each table indicates the order of the matrix N, and the number NZ of

non-zero elements that it contains.
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Method
Method Total

Parameters Time
3.3

w = 1 79.4

w - 1.5 79.4

w = 1.9 79.3

= 1.95 57.7

w = 1.0 78.0

= 1.5 95.9

w = 1.9 93.7

GE

SOR

SSOR

FXPTIT /

+ILUO

+ILUK

+ILUTH

ARNOLDI

PCARN/

+fLU0

+ILUK

+ILUTH

aMPmS/
+ILUO

+ILUK

+ILUTH

GMRES /

+SOR

175.1

K=5 65.7

K=10 177.0

r = .01 124.4

r = .001 77.4

r = 10-4 12.5

m=10 51.4

m=20 46.5

m=25 83.1

Set-up

Time

0.3

3.4

5.0

1.5

1.7

2.0

Iter.

Time

62.2

75.5

75.5

Flops

4.7

9.3

9.4

11.2

1.9

32.9

51.5

96.8

Additional

Memory

111,989

1,771

1,771

1,771

1,771

1,771

1,771

1,771

14,553

12,330

21,116

8,494

14,413

21,302

17,971

36,341

45,676

m=5 19.8 0.3 19.3 4.8 23,408

m=10 15.7 0.3 15.2 5.6 32,263

m=10, K=5 9.1 3.3 5.6 2.5 30,050

m=10, K=10, 5.9 4.3 1.4 0.5 38,735

m=10, _" = .01 15.1 1.6 13.4 7.1 26,104

m=10, _"= .001 11.6 1.8 9.7 3.0 32,142

m=5 149.1 0.3 148.6 23,408

m=10 16.4 0.3 15.9 5.2 32,263

m=20 : 16.5 0.3 16.0 8.7 49,973

m--10, K=5 7.5 3.3 4.1 1.8 30,050

m=10, K=10 5.8 4.2 1.4 0.5 38,735

m=10, _- = .01 13.0 1.6 11.2 5.5 26,104

m=5, r -- .001 92.4 1.7 90.5 23,287

m=10, r --- .001 97.2 1.8 95.2 32,142

m=20, r = .001 9.9 1.8 8.0 4.3 49,852
rT

m=10, w = 1.0 94.5 37.3 17,710

m=10, w = 1.95 49.8 18.7 17,710

Iters

*i000

"1000

*I000

726

*500

*500

*500
,,=

*1000

404

*1000

*1000

441

59

*ioio
"1020

"1625

160

150

70

I0

230

80

"1600

140

160

5O

10

180

"1000

"1000

8O

*i000

*500
,, ,,,

Residual

Norm
T

0.219E-16

0.494E-04

0.140E-03

0.105E-05

0.739E-11

0.509E-04

0.360E-04

0.140F,-03

0.926E-07

0.982E,-I0

0.226E-08

0.273E-07

0.997E-I0

0.840E-I0

0.121E-04

0.131E-03

0.184E-03

0.324E-I0

0.811E_I0

0.291E-I0

0.409E-II

0.543E-I0

0.205E-10

0.210E-06

0.632E-I0

0.715E-I0

0.922F.,-I0

0.438E-11

0.579E-10

0.298E-06

0.204E-06

0.746E-10

0.529E,-06

0.416E-03

Table h Performance Results for Example I. N=1,771; NZ=ll,011. NCD Case.
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Method Total Set-up Iter.
Method Parameters Time Time Time

FXPTIT/

+ILUK

+ILUTH

PCARN/

+ILU0

+ILUK

+ILUTH

GMRES /

+ILU0

+ILUK

+ILUTH

K=I6

r = .01

r = .001

m=10

m=10, K-'7

m=10, r = .01

m=10

m=10, K=7

m=10, r = .01

2,632.0

1,584.5

830.5

159.1

212.8

670.3

1,184.0

213.3

761.0

230.6

96.3

99.2

3.2

198.1

96.0

3.1

198.5

96.8

Flops

731.1 114.5

Additional Iters Residual

Memory Norm

420,896

92,375

201,550

154.5 66.1 437,138

13.3 5.9 444,790

672.8 326,635

1,179.5 437,138

13.4 5.9 444,790

662.8 326,635

*1000

*1000

320

130

10

*1000

*1000

10

*1000

0.587E-07

0.177E-05

0.998E-I0

0.750E-I0

0.887E-11

0.918E-09

0.201E-05

0.105E-10

0.461E-07

Table 2: Performance Results for Example I. N=23,426; NZ=156,026. NCD Case.
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Method

GE

soR

SSOR

FXPTIT /

+fLU0

+ILUK

+ILUTH

ARNOLDI

PCARN /

+ILU0

+ILUK

+ILUTH

GMRES /

+ILU0

+ILUK

+ILUTH

GMRES/
+SOR

+SSOR

Method Total Set-up Iter. Flops Additional

Parameters Time Time Time Memory

4.3 7.2 111,989

= 1 57.0 9.1 1,771

= 1.2 37.3 6.0 1,771

w = 1.3 31.2 5.0 1,771

w = i 92.9 14.1 1,771

w = 1.2 95.1 14.4 1,771

43.0 0.3 42.7 6.5 14,553

K=5 14.6 3.2 11.4 1.8 12,325

K=10 12.6 4.6 8.0 1.6 21,206

r = .01 34.5 1.8 32.6 5.4 17,385

r = .001 13.3 2.2 10.9 2.4 28,198

v = 10 .4 13.6 2.6 10.9 2.9 36,750

m=10 18.5 16.6 17,971

m=20 21.9 28.3 36,341

m=25 18.8 26.8 45,676

m=5 5.3 0.2 4.9 1.5 23,408

m=10 5.0 0.3 4.6 1.9 32,263

m=10, K=5 5.3 3.4 1.7 0.7 30,080

m-10, K--10 7.9 6.3 1.5 0.8 38,920

m=10, v = .01 4.1 1.7 2.3 0.8 35,113

m=10, r --- .001 5.6 2.2 3.2 1.1 45,908

m=5 5.4 0.3 4.9 1.5 23,408

m=10 5.0 0.3 4.6 1.9 32,263

m=20 4.2 0.3 3.8 2.2 49,973

m=10, K=5 5.4 3.5 1.8 0.7 30,080

m=10, K=10 7.8 6.3 1.4 0.7 38,920

m=10, r = .01 4.2 1.8 2.2 0.8 35,113

m=5, r = .001 5.7 2.2 3.4 1.0 37,053

m=10, r = .001 5.6 2.2 3.2 1.1 45,908

m=20, r = .001 5.6 2.2 3.3 1.5 63,618

m=10, w = 1.0 16.2 6.4 17,710

m=10, w = 1.0 34.2 9.4 17,710

Iters

711

464

387

591

605

254

75

47

191

61

59

510

560

450

Residual

Norm

0.139E-16

0.981E-10

0.995F_,-10

0.999E-10

0.986E,-10

0.984E-10

0.989E-I0

0.988E-I0

0.724E-I0

0.953E-I0

0.807E-10

0.775E-10

0.278E-10

0.138E-I0

0.875E-10

50 0.559E-10

50 0.637E-ii

20 0.556E-I0

10 0.561E-16

20 0.101E-11

20 0.599E-12

50 0.622E-10

50 0.470E-10

40 0.240E-12

20 0.531E-10

10 0.698E-16

2O 0.427E-12

20 0.281E-11

2O 0.478E-12

20 0.515E-14

170 0.101E-13

190 0.835E-14

Table 3: Performance Results for Example I. N=1,771; NZ=II,011 Non-NCD Case
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Method Total Set-up

Method Parameters Time Time

GE Failed

FXPTIT /

+ILUO

+ILUK

+ILUTH

PCARN/

+ILUO

+ILUK

+ILUTH

GMRES /

+ILUO

+ILUK

+ILUTH

K=16

r = .01

r = .001

m=10

m=10, K=7

m=10, v = .01

m=10

m=10, K=7

m=10, I"= .01

477.5

479.3

493.9

364.3

158.3

239.6

143.0

404.2

227.5

143.0

3.3

264.9

100.8

107.5

Iter. Flops Additional Iters Residual

Time Memory Norm

473.9 75.0

214.2 59.3

392.8 68.1

256.5 61.5

3.2 153.7 66.1

188.9 49.4 21.4

99.6 42.0 17.1

3.2 399.6 171.7

188.9 37.2 16.1

99.6 42.1 17.0

202,878 206

421,518 90

245,705 169

413,483 106

437,138 130

444,978 40

480,013 30

437,138 340

444,978 30

480,013 30

0.964E-I0

0.952E-I0

0.915E-10

0.780E-I0

0.166E-10

0.821F.,-12

0.622E..10

0.180E-10

0.867E-II

0.341E-10

Table 4: Performance Results for Example I. N=23,426; NZ=156,026. Non-NCD Case
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Method

Method Parameters

GE

SOR w=l.0

w=1.2

w=1.3

SSOR w = 1.0

w=1.2

FXPTIT /

+ILU0

÷ILUK

+ILUTH

ARNOLDI

PCARN /
+ILU0

+ILUK

+ILUTH

GMP S /
+ILU0

+ILUK

+ILUTH

GMRES /

+SOR

+SSOR

Total Set-up Iter. Flops Additional

Time Time Time Memory

1.3 .3 28,554
,==

108.5 2,431

108.4 2,431

104.3 13.6 2,431

107:9 2,431

109.0 2,431

83.0 0.3 82.5 9.6 16,543

K=5 93.5 1.4 92.0 12.6 16,999

K=10 28.8 2.5 26.2 4.6 29,066

r = .01 85.7 0.6 84.9 11.0 15,051

r = .001 8.6 1.2 7.3 1.2 30,571

m=10 45.6 41.6 24,571

m=10 22.1 0.3 21.6 7.6 40,853

m=10, K=5 12.0 1.4 10.4 4.8 41,258

m=10, K=10 4.7 2.6 1.9 0.7 53,382

m=10, r = .01 16.4 0.7 15.5 6.0 39,371

m=10, r = .001 8.0 1.2 6.6 1.9 54,924

m=10 101.8 0.3 101.3 40,853

m=10, K=5 102.9 1.5 101.3 41,258

m=10, K=10 4.4 2.4 1.8 0.7 53,382

m=10, r = .01 99.3 0.7 98.4 39,371

m=10, r = .001 6.6 1.2 5.2 1.9 54,924

m=10, w = 1.0 131.2 47.4 24,310

m=10, w = 1.0 246.4 60.3 24,310

Iters Residual

Norm

0.404E-17

"1000 0.910E-04

"1000 0.342E-06

962 0.946E-10

*500 0.321E-03

*500 0.896E-03

342 0.992E-10

440 0.943E-10

112 0.927E-10

411 0.947E-10

28 0.856E-10

"1010"- 0.334E-03

160 0.536E-11

100 0.306E-10

10 0.195E-12

130 0.252E-10

30 0.138E-11

"1000 0.151E-05

"1000 0.233_07

10 0.177E-12

"1000 0.666E-05

30 0.200E-12

*1000 0.486E-01

*1000 0.202E-03

Table 5: Peffomance Results for Example 2. N=2,431; NZ=ll,681

36



Method
Method Parameters

GE
FXPTIT /

+I"LUO

+ILUK

+ILUTH

PCARN/

+fLU0

+ILUK

+ILUTH

GMRES/

+I_UO

+ILUK

+ILUTH

K=16

r = .Ol

r = .001

m=10

m=10, K=5

m=10, r = .01

m=10

m=10, K=5

m=10, r = .01

Total

Time

16.0

1,008.9

113.8

1,372.7

144.0

237.6

160.9

229.2

710.2

729.8

636.4

Set-up

Time

1.9

33.2

8.3

I0.7

1.9

16.8

8.5

1.9

16.8

8.5

Iter.

Time

1,006.8

80.4

133.2

234.8

143.3

219.8

707.4

712.2

627.1

Flops

12.9

128.6

18.0

21.8

111.3

67.8

111.3

Additional

Memory

532,059

118,373

305,460

100,853

180,126'

289,183

290,108

271,684

289,183

290,108

271,684

Iters

635

47

*i000

82

330

200

350

*1000

*1000

*1000

Residual

Norm

0.699E-18

0.932E-I0

0.768E-I0

0.259F__09

0.613E-I0

0.129E-I0

0.904E-II

0.961E-I0

0.375E-06

0.952E,-08

0.502E,-06

Table 6: Performance Results for Example 2. N=17,081; NZ = 84,211
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Method

GE

SOIl

SSOR w = 1.0

w- 1.2

FXPTIT /

+ILU0

+ILUK

+ILUTH

ARNOLDI m=10

PCA / ....
+ILU0

+ILUK

+ILUTH

aMmOS/
+fLU0

+ILUK

+ILUTH

GMRES /

+SOR

+SSOR

Metho_i Tot_

Parameters Time
L , •

25.0

w = 1 87.9

w = 1.2 90.0

w =" 1.3 92.8

178.0

174.6

Set-up Iter. Flops

Time Time

71.8

171.2 0.3

K=5 172.4 8.5

K=I0 30.6 10.8 19.7 4.1

r = .01 34.5 4.5 30.0 7.4

r - .001 27.7 6.6 21.0 8.7

39.2 36.8

m=10 51.3 0.3 50.9 21.8

m=10, K=5 19.3 8.9 10.2 4.6

m=10, K=I0 18.5 10.5 7.9 3.1

m=10, r = 0.01 11.3 5.0 6.1 2.1

m=10, r = 0.001 21.5 6.0 15.3 5.2

m=10 98.8 0.3 98.3

m=10, K=5 19.5 9.4 10.0 3.9

m=10, K=10 18.5 10.5 7.8 3.1

m=10, r = 0.01 11.4 5.0 6.2 2.1

m=10, r = 0.001 19.4 6.0 13.2 4.5

m=10, w = 1.0 101.6 41.7

m=i0, w = 1.0 194.4 55.9

Additional Residual

Memory Nora

411,823 0.I15E-16

0.312E-05

0.465E-05

0.104E+02

0.293E-05

0.857E-05

Iters

1,940 "1000

1,940 *1000

1,940 *1000

1,940 *1000

1,940 *1000

16,604 *1000

13,525 *1000

23,228 107

28,218 179

68,076 108

19,661 *1010

36,104 520

32,990 120

42,646 60

46,597 40

62,546 70

36,104 "1000

32,990 100

42,646 60

46,597 40

62,510 60

19,400 *1000

19,400 *1000

0.241E-05

0.596F_,-06

0.965E-10

0.994E-10

0.980E-10

0.337E-04

0.754E-10

0.206E-10

0.246E-10

0.238E-11

0.584E-10

0.108E-06

0.168E-11

0.692E-10

0.119E-11

0.917E-11

0.192E-08

0.484E-09

Table 7: Perfomance Results for Example 3. N=1,940; NZ=12,824. NCD Case.
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Method

Parameters

Total

TimeMethod

GE Failed

FXPTIT/

+ILUK

+ILUTH

PCARN/

+ILU0

+ILUK

+ILUTH

K=16

r = .01

= .001

m=10

m=10, K=7

m=10, r = .01

m=10

m=10, K=7

m=10, r = .01

GMPmS/
+ILUO

+ILUK

+ILUTH

804.7

562.1

957.7

1,023.8

514.2

231.6

1,013.6

1,336.8

232.7

Set-up

Time

296.3

135.0

173.6

2.4

305.4

152.3

2.4

305.4

152.2

Iter. Flops Additional

Time Memory

508.0 110.2

427.0 99.5

784.0 360.0

1,020.2

207.7 88.8

78.2 28.8

1,010.0

1,030.2

79.3 28.5

Iters

328,701

290,948

872,623

367,060

372,770

484,133

367,060

372,770

484,148

231

234

351

"1000

200

50

*I000

*1000

50

Residual

Norm

0.952E-10

0.996E-I0

0.977E-10

0.524E-08

0.968E-I0

0.252E-I0

0.150E-06

0.156E-06

0.852E-11

Table 8: Peffomance Results for Example 3. N=19,620; NZ=131,620. NCD Case.
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Method

Method Parameters

GE

SOR _ = 1

w=l.2

w=1.3

SSOR _ = 1

w= 1.2

FXPTIT /

+ILUO

+ILUK

+ILUTH

ARNOLDI m=10

PCAR.N /

+fLU0

+ILUK

+ILUTH

GMRES/
+ILU0

+ILUK

+ILUTH

GMRES /

+SOR

+SSOR

Total

Time

25.8

12.4

8.4

9.6

13.5

9.9

Set-up

Time

Iter.

Time

Flops

74.5

2.1

1.4

1.6

2.1

1.6

Additional Iters

Memory

411,823

1,940 139

1,940 93

1,940 107

1,940 77

1,940 56

Ii.0 0.3 I0.7 1.8 16,704 63

K=5 21.4 8.1 13.2 2.2 13,486 83

K=10 18.8 9.8 8.9 1.9 23,257 49

r = .01 10.3 4.8 5.5 1.6 36,937 29

I"= .001 16.6 12.8 3.8 3.0 128,199 16

4.8 4.4 19,661 120

m=10 3.5 0.3 3.1 1.3 36,104 30

m=10, K=5 11.6 8.8 2.7 1.2 32,990 30

m=10, K=10 16.5 13.7 2.7 1.4 42,640 20

m=10, r = .01 9.5 5.4 4.0 1.4 56,178 20

m=10, _"= .001 23.6 12.2 11.2 4.7 139,185 20

m=10 3.5 0.2 3.1 1.3 36,104 30

m=10, K=5 11.5 8.8 2.6 1.2 32,990 30

m=10, K=10 16.6 13.8 2.7 1.4 42,640 20

m=10, r = .01 9.4 5.4 3.9 1.4 56,178 20

m=10, r = .001 23.6 12.3 11.2 4.7 139,189 20

m=10, w = 1.0 17.4 7.0 19,400 168

m=10, w = 1.0 8.2 2.3 19,400 40

Residual

Norm

0.159E-16

0.913E-10

0.801E-10

0.828E-10

0.856F_,-10

0.979E-10

0.959E-I0

0.790E-I0

0.835E-I0

0.859E-I0

0.640F_,-I0

0.411E-10

0.420E-12

0.369E-I0

0.154E-I0

0.217E-I0

0.889E-13

0.502E-12

0.217E-I0

0.133E-I0

0.861F_,-II

0.650E-13

0.707E-14

0.974E-14

Table 9: Performance Results for Example 3. N=1,940; NZ=12,824. Non-NCD Case
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Method Total Set-up

Method Parameters Time Time

GE Failed

FXPTIT /

+ILU0

+ILUK

+ILUTH

PCA ' /
+fLU0

+ILUK

+ILUTH

GM S /
+ILUO

+ILUK

+ILUTH

K=16

r = .01

m=10

m=10, K=7

m=10, _"= .01

m=10

m=10, K=7

m=10, _ = .01

179.9

398.7

219.3

74.7

371.3

215.8

105.3

391.8

215.8

3.1

293.6

137.9

2.4

317.8

155.1

2.4

317.9

155.1

Iter. Flops Additional Iters Residual

Time Memory Norm

176.6 31.4 170,860 104

104.9 29.7 329,692 55

81.2 23.0 376,620 43

71.0 29.9 367,060 70

52.2 25.1 372,774 50

59.5 21.1 572,967 30

101.7 42.5 367,060 100

72.8 33.6 372,774 70

59.4 21.0 572,966 30

0.848E-I0

0.648E-I0

0.726E-I0

0.650E-I0

0.332E-11

0.252E-10

0.827E-11

0.159E-10

0.844F,-11

Table 10: Peffomaace Results for Example 3. N=19,620; NZ=131,620. Non-NCD Case.
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